
1

Batch execution of CAPRI tasks

- by Wolfgang Britz, July 2008 -

Why batch execution?

Currently, CAPRI tasks are typically defined and executed via the CAPRI GUI. The GUI

supports the user by giving feedback to erroneous selection and reduces the selection space by

excluding illegal settings. However, the GUI let the users to wait for execution of the current

task before allowing starting a new one, and requires a environment supporting graphical user

interaction. There may be instances where these restrictions need to be overcome:

• Repeatedly execution of a longer list of predefined tasks, such as a test suite to check

the status of a certain work copy or the status of the trunk or a tag. The test may need

to run a remote machine, and not during office hours. It may be started automatically

if the trunk or a tag was updated during the working day. The batch execution ensures

that all tests in the suite are executed, and nothing is left out.

• Execution of several scenarios in a row, e.g. for systematic sensitive analysis.

• Usage of an environment without graphical facilities, as in grid computing.

There had been also work around to circumvent the GUI, e.g. storing the GAMS code

generated by the GUI under different names, and use OS command batch files to copy them,

start GAMS, and copy the results again. However, for a larger test suite, such a proceeding is

rather cumbersome. Further on, the batch execution facility provides also a testing

environment for a more modular implementation of the CAPRI objects in Java.

Overview on the batch processor and testing

The following diagram depicts the principal interaction in batch processing for testing

purposes. Assume that the local working copy comprises some modifications which require

testing. In order to do so, typically the result directories are first updated to be synchronized

with the server to ensure a common comparison point.

Next, a suitable set of batch commands is edited in a text file, and the batch processor is

started. It will generate from the commands in the text file objects with the required

properties. These objects then output their settings (base year, Member states includes, model

2

switches etc.) into an include file formatted according to the requirement of the GAMS task to

be performed.

In opposite to normal execution mode, the GAMS task will store all output into a separate test

directory. On error free completion, it will execute a GAMS based difference analyzer which

compares the results from the working copy with the results in the test directory. The outcome

of the test along with information about the run is reported to a HTML page and/or GDX

files. After an inspection of the reports, the user will then take the decision to commit the

changes or not.

Diagram: Conception overview of batch processing for testing

Batch processors

SVN

Working copy

Update
Commit

Batch
commands

GAMS task

Include
file

Test
directory

HTML
output

GAMS
difference
analyzer

The batch command language

The batch handler reads the settings from a simple ASCII file. Each line is either a comment

starting with an asterisk, or a setting line. A setting line comprises a key word, an equal sign,

and the actual setting. The only exemptions are ontext, offtext, exit and comment lines starting

with an asterisk. The following table lists the currently implemented key words. Key words

may be concentrated or not, and any mixed of lower and upper case may be used.

3

Key word/phrase Meaning

Base year Defines the base year for the task, if applicable. Otherwise ignored

Execute Will try to generate a task from the current settings, and excute it.

Allowed settings: gamscompile or gamsexecute.

Exit Will exit the current batch file

First year Defines the first year for the task, if applicable. Otherwise ignored

Gams engine Path to GAMS.exe (e.g. c:\programme\gams22.5\gams.exe)

Gams options Gams options to use (e.g. RF=test.ref). KILL will remove any options

present.

Last year Defines the last year for the task, if applicable. Otherwise ignored

Member states The list of member states, comma delimited. Further on, the following

short cuts are allowed: all, EU27, EU25, EU 15, EU12, EU10, BUR,

WBA

Model switches MARKET_M, YANI_M, RECDYN; further switches as BASELINE,

POLSHIFT, EXPOST are generated from the task. KILL removes all

model switches currently present

Number of

iterations

Maximal number of iterations between supply and market parts

Number of

processors

Maximal number of processors to use when applying the grid solution

feature of GAMS

Offtext Statements are interpreted again

Ontext Any following statements are ignored

Output dir The directory where listing files will be generated along with the HTML

summary page

4

Key word/phrase Meaning

Regional break

down

Member States, NUTS 2, Farm types. Not all settings may be allowed

depending on the task

Res dir Results where results will be read from and stored to

restartOutDir Substitute for restart directory

resultsOutDir Substitute for results directory

Scen description A string describing the scenario

Scen name The name of the scenario, determines at the same time the policy file to

use

Scr dir Scratch directory used by GAMS and by the task to store temporary

files.

Sim year The simulation year

Task The task name

User Name of the user, will be added to the meta data for the run

Work dir The root of the CAPRI implementation from where the main program

will be started, and how includes are resolved.

Work step The work step for the task

Remark:

• Neither key words nor settings are case sensitive. Key phrases can be written as a

single word, also.

• Comment blocking surrounding by “*-----“ are reported to the HTML output page.

• Any error while processing the batch file is reported to the HTML output page.

• Execution after errors will continue.

5

• Errors while defining a task will prevent it from executing. The same holds from using

illegal GAMS options, as they will trigger an error even preventing compilation.

The output from batch execution

As it is assumed that batch execution will not be monitored by the user during execution,

some logging mechanism must be established. The current implementation offers two

interlinked approaches:

1. The listing files generated by GAMS, and the include files steering the GAMS

programs as “fortran.gms” are stored under a specific id in the current work directory,

or an directory defined by the user by the key word “copy dir”.

2. A HTML page reports all tasks which have been started, the return code of the GAMS

process and all major setting, as well as link to open the listing file with the editor. The

following screen shot shows the first part of the HTML page resulting from executing

the above batch file. Tasks which did yield a non-zero GAMS return code and errors

are shown in red.

The current batch steering file used for test

**
*
* Standard test suite for the GAMS programs of CAPRI
*
* Since: July 2008
* Author: Wolfgang Britz
*
**

 base Year = 2002
 first Year = 1985

6

 last Year = 2004

 member States=all
 regional Break Down = NUTS 2
gams engine=c:\programme\gams22.8\gams.exe
 user = britz

work dir = t:\britz\capri\gams
*
* --- where the HTML page and the listings
* will be stored
*
 output dir = d:\batchOutput

 res dir = t:\britz\capri\results
 scr dir = d:\scrdir

 gams options = scrdir=d:\scrdir
*
* --- The following settings will write
* The results into different directories.
* The directory structure will be automatically
* generated
*

 restartOutDir = d:\restart
 resultsOutDir = d:\results

 number of processors = 4
 number of iterations = 1

*---
*
* Build national data: COCO
*
*---

 model switch=ESTIMCROP ON
 model switch=ESTIMANIM ON
 model switch=ESTIMBAL ON

 task= Prepare national database
 execute=gamscompile

 task= Finish national database
 execute=gamscompile

 model switch=kill

*---
*
* Build global data: GLOBAL
*
*---

 task= Build global database
 execute=gamscompile

*---
*
* Build regional data base : CAPREG

7

*
*---

 task= Build regional database
 execute=gamscompile

*---
*
* Work steps of build data: CAPDIS
*
*---

 task= Build HSMU database
 execute=gamscompile

*---
*
* Baseline generation
*
*---

 last Year = 2013
 sim Year = 2013
 scen name=MTRSTD
 model switch=MARKET_M ON
model switch=YANI_M ON

 regional Break Down = NUTS 2

 number of iterations = 15
 task= Generate expost results
 execute=gamscompile

 task= Generate policy shifts
 execute=gamscompile

 task= Generate trend projection
 execute=gamscompile

 regional Break Down = Member States

 number of iterations = 1
 model switch=YANI_M OFF
 task= Baseline calibration
 execute=gamscompile

 model switch=MARKET_M OFF
 regional Break Down = NUTS 2

 task= Baseline calibration
 execute=gamscompile

*---
*
* Simulation
*
*---

 model switch=MARKET_M ON
 model switch=YANI_M ON

8

 model switch=RECDYN OFF

 regional Break Down = NUTS 2

 task= Run simulation
 execute=gamscompile

 scen name=AGENDA
 task= Run simulation
 execute=gamscompile

 scen name=WTOHRB
 task= Run simulation
 execute=gamscompile

The file above will in total trigger 112 compilation tests, starting all programs which can be

accessed via the GUI. Alternatively, the batch could be used to generate all production data

from scratch.

Towards a test suite for CAPRI

Some issues are still open to realize a test suite for CAPRI. Straightforward are compile

checks – but even those are currently not systematically undertaken after commits to the

trunk. As compilation does not overwrite any production data, they can be simply performed

on the current working copy, or an updated version synchronised with the trunk. However, we

are still missing a batch update of an SVN installation, albeit it is by now rather

straightforward since the SVNKit has already been successfully tested for documentation tool.

Running the programs in order to detect probably run-time errors raised by GAMS carries

already the risk to overwrite production data. Therefore, the “resultsOutDir” and

“restartOutDir” options are introduced. The GAMS code is modified so that write statements

to “RESDIR” are replaced to output to the “resultsOutDir”, whereas input is taken from

RESDIR. Accordingly, all existing results will be preserved.

The most tricky issue is certainly to judge if differences in numerical results between

implementation are sizeable or not, and if they are, if one of the implementation is superior.

The latter will in the near future certainly not be answered based on an algorithm. But it may

be possible to develop for each task a small GAMS program which analyses and reports

differences in major results.

Basically, we need for GLOBAL, COCO, CAPREG, CAPTRD and CAPMOD a possible

included program, which loads the very same results set resulting from the current task and

settings for the current run and a comparison one (typically the one in local working copy,

which may be synchronised with the trunk). In practise, that could be the result directory for

9

output (current run) and input (previous results). That features is implemented now in the

batch processor, and in the GAMS code, but more thorough testing is necessary, and

eventually, also some discussions regarding the detailed implementation.

The program would calculate absolute or relative differences between the two sets for a

predefined array of positions, and report those, either as a GDX or as a HTML page. The

positions selected should be good indicators in the sense that they (a) allow to judge quickly if

the results has changed at all (quite important if refactoring is done to speed up processing or

introduce clearer structure), and (b) detect major changes.

Technical implementation

The implementation is based on Java, and actually was realized not so much as a batch

execution device. Rather it started as a testing environment for a new IT structure for the

CAPRI GUI. The idea behind the new implementation is a clearer separation of the logical

sphere of CAPRI – its business objects – and the man-machine interface which defines and

execute tasks. The current GUI has emerged from some Java tests when the CAPRI was still

hosted in a FORTRAN/C-GAMS environment, and has grown considerably without ever

being redesigned. The development of the batch processing abilities is a first step to a more

modular and encapsulated implementation of CAPRI tasks. Clearly, that will ease in future

alternative implementations, e.g. in a client-server environment or an alternative processing

environment

At the core are executable object of type AgpTask. Each AgpTask has properties (task as

“Build regional database”, a work step “Build data base”, the GAMS program to execute

(CAPREG), and further properties as “base year”, “first year”, “last year”, the list of Member

States etc). An AgpTaskHandler is an interface which is able to generate and execute such a

task. Currently, there is abstract implementation AgpDefaultTaskHandler which implements

major elements of the interface, from which a batch execution handler is derived. But, in the

near future, the CAPRI GUI will be replaced by a AgpTaskHandler implementation.

The execution of a CAPRI tasks is currently realised as a GAMS process. In future, also the

exploitation steps will be realized.

Outstanding issues

• Timed execution

• Automated update and revert of the local working copy

10

• Distribution and start on remote machine

